Representations of nilpotent locally compact groups
نویسندگان
چکیده
منابع مشابه
Representations of Locally Compact Totally Disconnected Groups
Let G be a locally compact totally disconnected group. Recall that every neighborhood of 1 in G contains a compact open subgroup. If G is assumed to be compact, then every neighborhood of 1 in G contains a compact open normal subgroup. On the other hand, it follows from properties of Lie groups that the group GL(n,C) has the property that there is some neighborhood of the identity which contain...
متن کاملLocally Nilpotent Linear Groups
This article examines aspects of the theory of locally nilpotent linear groups. We also present a new classification result for locally nilpotent linear groups over an arbitrary field F. 1. Why Locally Nilpotent Linear Groups? Linear (matrix) groups are a commonly used concrete representation of groups. The first investigations of linear groups were undertaken in the second half of the 19th cen...
متن کاملOn component extensions locally compact abelian groups
Let $pounds$ be the category of locally compact abelian groups and $A,Cin pounds$. In this paper, we define component extensions of $A$ by $C$ and show that the set of all component extensions of $A$ by $C$ forms a subgroup of $Ext(C,A)$ whenever $A$ is a connected group. We establish conditions under which the component extensions split and determine LCA groups which are component projective. ...
متن کاملBracket Products on Locally Compact Abelian Groups
We define a new function-valued inner product on L2(G), called ?-bracket product, where G is a locally compact abelian group and ? is a topological isomorphism on G. We investigate the notion of ?-orthogonality, Bessel's Inequality and ?-orthonormal bases with respect to this inner product on L2(G).
متن کاملCertain Locally Nilpotent Varieties of Groups
Let c ≥ 0, d ≥ 2 be integers and N (d) c be the variety of groups in which every dgenerator subgroup is nilpotent of class at most c. N.D. Gupta posed this question that for what values of c and d it is true that N (d) c is locally nilpotent? We prove that if c ≤ 2 d + 2 − 3 then the variety N (d) c is locally nilpotent and we reduce the question of Gupta about the periodic groups in N (d) c to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Functional Analysis
سال: 1979
ISSN: 0022-1236
DOI: 10.1016/0022-1236(79)90030-2